#!/usr/local/bin/gnuplot -persist # set terminal pngcairo transparent enhanced font "arial,10" fontscale 1.0 size 600, 400 # set output 'prob2.4.png' set format x "%2.0f" set format y "%3.2f" set key fixed right top vertical Right noreverse enhanced autotitle box lt black linewidth 1.000 dashtype solid set label 1 "mu" at 2.83333, 0.0330000, 0.00000 left norotate back nopoint set label 2 "sigma" at 5.62220, 0.0867631, 0.00000 left norotate back nopoint set arrow 1 from 2.33333, 0.00000, 0.00000 to 2.33333, 0.143048, 0.00000 nohead back nofilled linewidth 1.000 dashtype solid set arrow 2 from 2.33333, 0.0867631, 0.00000 to 5.12220, 0.0867631, 0.00000 nohead back nofilled linewidth 1.000 dashtype solid unset parametric set samples 200, 200 set style data lines set ytics norangelimit 0.00000,0.033,0.330000 set title "geometric PDF using normal approximation" set xlabel "k, x ->" set xrange [ -2.00000 : 15.0000 ] noreverse nowriteback set x2range [ * : * ] noreverse writeback set ylabel "probability density ->" set yrange [ 0.00000 : 0.330000 ] noreverse nowriteback set y2range [ * : * ] noreverse writeback set zrange [ * : * ] noreverse writeback set cbrange [ * : * ] noreverse writeback set rrange [ * : * ] noreverse writeback set colorbox vertical origin screen 0.9, 0.2 size screen 0.05, 0.6 front noinvert bdefault isint(x)=(int(x)==x) Binv(p,q)=exp(lgamma(p+q)-lgamma(p)-lgamma(q)) arcsin(x,r)=r<=0?1/0:abs(x)>r?0.0:invpi/sqrt(r*r-x*x) beta(x,p,q)=p<=0||q<=0?1/0:x<0||x>1?0.0:Binv(p,q)*x**(p-1.0)*(1.0-x)**(q-1.0) binom(x,n,p)=p<0.0||p>1.0||n<0||!isint(n)?1/0: !isint(x)?1/0:x<0||x>n?0.0:exp(lgamma(n+1)-lgamma(n-x+1)-lgamma(x+1) +x*log(p)+(n-x)*log(1.0-p)) cauchy(x,a,b)=b<=0?1/0:b/(pi*(b*b+(x-a)**2)) chisq(x,k)=k<=0||!isint(k)?1/0: x<=0?0.0:exp((0.5*k-1.0)*log(x)-0.5*x-lgamma(0.5*k)-k*0.5*log2) erlang(x,n,lambda)=n<=0||!isint(n)||lambda<=0?1/0: x<0?0.0:x==0?(n==1?real(lambda):0.0):exp(n*log(lambda)+(n-1.0)*log(x)-lgamma(n)-lambda*x) extreme(x,mu,alpha)=alpha<=0?1/0:alpha*(exp(-alpha*(x-mu)-exp(-alpha*(x-mu)))) f(x,d1,d2)=d1<=0||!isint(d1)||d2<=0||!isint(d2)?1/0: Binv(0.5*d1,0.5*d2)*(real(d1)/d2)**(0.5*d1)*x**(0.5*d1-1.0)/(1.0+(real(d1)/d2)*x)**(0.5*(d1+d2)) gmm(x,rho,lambda)=rho<=0||lambda<=0?1/0: x<0?0.0:x==0?(rho>1?0.0:rho==1?real(lambda):1/0): exp(rho*log(lambda)+(rho-1.0)*log(x)-lgamma(rho)-lambda*x) geometric(x,p)=p<=0||p>1?1/0: !isint(x)?1/0:x<0||p==1?(x==0?1.0:0.0):exp(log(p)+x*log(1.0-p)) halfnormal(x,sigma)=sigma<=0?1/0:x<0?0.0:sqrt2invpi/sigma*exp(-0.5*(x/sigma)**2) hypgeo(x,N,C,d)=N<0||!isint(N)||C<0||C>N||!isint(C)||d<0||d>N||!isint(d)?1/0: !isint(x)?1/0:x>d||x>C||x<0||x1?1/0: !isint(x)?1/0:x<0?0.0:p==1?(x==0?1.0:0.0):exp(lgamma(r+x)-lgamma(r)-lgamma(x+1)+ r*log(p)+x*log(1.0-p)) nexp(x,lambda)=lambda<=0?1/0:x<0?0.0:lambda*exp(-lambda*x) normal(x,mu,sigma)=sigma<=0?1/0:invsqrt2pi/sigma*exp(-0.5*((x-mu)/sigma)**2) pareto(x,a,b)=a<=0||b<0||!isint(b)?1/0:x=a?0.0:f==0?1.0/a:2.0/a*sin(f*pi*x/a)**2/(1-sin(twopi*f)) t(x,nu)=nu<0||!isint(nu)?1/0: Binv(0.5*nu,0.5)/sqrt(nu)*(1+real(x*x)/nu)**(-0.5*(nu+1.0)) triangular(x,m,g)=g<=0?1/0:x=m+g?0.0:1.0/g-abs(x-m)/real(g*g) uniform(x,a,b)=x<(a=(a>b?a:b)?0.0:1.0/abs(b-a) weibull(x,a,lambda)=a<=0||lambda<=0?1/0: x<0?0.0:x==0?(a>1?0.0:a==1?real(lambda):1/0): exp(log(a)+a*log(lambda)+(a-1)*log(x)-(lambda*x)**a) carcsin(x,r)=r<=0?1/0:x<-r?0.0:x>r?1.0:0.5+invpi*asin(x/r) cbeta(x,p,q)=ibeta(p,q,x) cbinom(x,n,p)=p<0.0||p>1.0||n<0||!isint(n)?1/0: !isint(x)?1/0:x<0?0.0:x>=n?1.0:ibeta(n-x,x+1.0,1.0-p) ccauchy(x,a,b)=b<=0?1/0:0.5+invpi*atan((x-a)/b) cchisq(x,k)=k<=0||!isint(k)?1/0:x<0?0.0:igamma(0.5*k,0.5*x) cerlang(x,n,lambda)=n<=0||!isint(n)||lambda<=0?1/0:x<0?0.0:igamma(n,lambda*x) cextreme(x,mu,alpha)=alpha<=0?1/0:exp(-exp(-alpha*(x-mu))) cf(x,d1,d2)=d1<=0||!isint(d1)||d2<=0||!isint(d2)?1/0:1.0-ibeta(0.5*d2,0.5*d1,d2/(d2+d1*x)) cgmm(x,rho,lambda)=rho<=0||lambda<=0?1/0:x<0?0.0:igamma(rho,x*lambda) cgeometric(x,p)=p<=0||p>1?1/0: !isint(x)?1/0:x<0||p==0?0.0:p==1?1.0:1.0-exp((x+1)*log(1.0-p)) chalfnormal(x,sigma)=sigma<=0?1/0:x<0?0.0:erf(x/sigma/sqrt2) chypgeo(x,N,C,d)=N<0||!isint(N)||C<0||C>N||!isint(C)||d<0||d>N||!isint(d)?1/0: !isint(x)?1/0:x<0||xd||x>C?1.0:hypgeo(x,N,C,d)+chypgeo(x-1,N,C,d) claplace(x,mu,b)=b<=0?1/0:(x1?1/0: !isint(x)?1/0:x<0?0.0:ibeta(r,x+1,p) cnexp(x,lambda)=lambda<=0?1/0:x<0?0.0:1-exp(-lambda*x) cpareto(x,a,b)=a<=0||b<0||!isint(b)?1/0:xa?1.0:f==0?real(x)/a:(real(x)/a-sin(f*twopi*x/a)/(f*twopi))/(1.0-sin(twopi*f)/(twopi*f)) ct(x,nu)=nu<0||!isint(nu)?1/0:0.5+0.5*sgn(x)*(1-ibeta(0.5*nu,0.5,nu/(nu+x*x))) ctriangular(x,m,g)=g<=0?1/0: x=m+g?1.0:0.5+real(x-m)/g-(x-m)*abs(x-m)/(2.0*g*g) cuniform(x,a,b)=x<(a=(a>b?a:b)?1.0:real(x-a)/(b-a) cweibull(x,a,lambda)=a<=0||lambda<=0?1/0:x<0?0.0:1.0-exp(-(lambda*x)**a) rnd(x) = floor(x+0.5) NO_ANIMATION = 1 fourinvsqrtpi = 2.25675833419103 invpi = 0.318309886183791 invsqrt2pi = 0.398942280401433 log2 = 0.693147180559945 sqrt2 = 1.4142135623731 sqrt2invpi = 0.797884560802865 twopi = 6.28318530717959 r_xmin = -1 r_sigma = 4.0 n = 50 p = 0.3 mu = 2.33333333333333 sigma = 2.78886675511359 xmin = -1 xmax = 14 ymax = 0.33 lambda = 0.3 rho = 0.7 plot geometric(rnd(x),p) with histeps, normal(x, mu, sigma)