# # This demo is very slow and requires unusually large stack size. # Do not attempt to run this demo under MSDOS. # # the function integral_f(x) approximates the integral of f(x) from 0 to x. # integral2_f(x,y) approximates the integral from x to y. # define f(x) to be any single variable function # # the integral is calculated using Simpson's rule as # ( f(x-delta) + 4*f(x-delta/2) + f(x) )*delta/6 # repeated x/delta times (from x down to 0) # delta = 0.2 # delta can be set to 0.025 for non-MSDOS machines # # integral_f(x) takes one variable, the upper limit. 0 is the lower limit. # calculate the integral of function f(t) from 0 to x # choose a step size no larger than delta such that an integral number of # steps will cover the range of integration. integral_f(x) = (x>0)?int1a(x,x/ceil(x/delta)):-int1b(x,-x/ceil(-x/delta)) int1a(x,d) = (x<=d*.1) ? 0 : (int1a(x-d,d)+(f(x-d)+4*f(x-d*.5)+f(x))*d/6.) int1b(x,d) = (x>=-d*.1) ? 0 : (int1b(x+d,d)+(f(x+d)+4*f(x+d*.5)+f(x))*d/6.) # # integral2_f(x,y) takes two variables; x is the lower limit, and y the upper. # calculate the integral of function f(t) from x to y integral2_f(x,y) = (x<y)?int2(x,y,(y-x)/ceil((y-x)/delta)): \ -int2(y,x,(x-y)/ceil((x-y)/delta)) int2(x,y,d) = (x>y-d*.5) ? 0 : (int2(x+d,y,d) + (f(x)+4*f(x+d*.5)+f(x+d))*d/6.) set autoscale set title "approximate the integral of functions" set samples 50 set key bottom right f(x) = exp(-x**2) plot [-5:5] f(x) title "f(x)=exp(-x**2)", \ 2/sqrt(pi)*integral_f(x) title "erf(x)=2/sqrt(pi)*integral_f(x)", \ erf(x) with points |
f(x)=cos(x) plot [-5:5] f(x) title "f(x)=cos(x)", integral_f(x) |
set title "approximate the integral of functions (upper and lower limits)" f(x)=(x-2)**2-20 plot [-10:10] f(x) title "f(x)=(x-2)**2-20", integral2_f(-5,x) |
f(x)=sin(x-1)-.75*sin(2*x-1)+(x**2)/8-5 plot [-10:10] f(x) title "f(x)=sin(x-1)-0.75*sin(2*x-1)+(x**2)/8-5", integral2_f(x,1) |
# # This definition computes the ackermann. Do not attempt to compute its # values for non integral values. In addition, do not attempt to compute # its beyond m = 3, unless you want to wait really long time. ack(m,n) = (m == 0) ? n + 1 : (n == 0) ? ack(m-1,1) : ack(m-1,ack(m,n-1)) set xrange [0:3] set yrange [0:3] set isosamples 4 set samples 4 set title "Plot of the ackermann function" splot ack(x, y) |
set xrange [-5:5] set yrange [-10:10] set isosamples 10 set samples 100 set key top right at 4,-3 set title "Min(x,y) and Max(x,y)" # min(x,y) = (x < y) ? x : y max(x,y) = (x > y) ? x : y plot sin(x), x**2, x**3, max(sin(x), min(x**2, x**3))+0.5 |
# # gcd(x,y) finds the greatest common divisor of x and y, # using Euclid's algorithm # as this is defined only for integers, first round to the nearest integer gcd(x,y) = gcd1(rnd(max(x,y)),rnd(min(x,y))) gcd1(x,y) = (y == 0) ? x : gcd1(y, x - x/y * y) rnd(x) = int(x+0.5) set samples 59 set xrange [1:59] set auto set key default set title "Greatest Common Divisor (for integers only)" plot gcd(x, 60) with impulses |
# # This definition computes the sum of the first 10, 100, 1000 fourier # coefficients of a (particular) square wave. set title "Finite summation of 10, 100, 1000 fourier coefficients" set samples 500 set xrange [-10:10] set yrange [-0.4:1.2] set key bottom right fourier(k, x) = sin(3./2*k)/k * 2./3*cos(k*x) sum10(x) = 1./2 + sum [k=1:10] fourier(k, x) sum100(x) = 1./2 + sum [k=1:100] fourier(k, x) sum1000(x) = 1./2 + sum [k=1:1000] fourier(k, x) plot \ sum10(x) title "1./2 + sum [k=1:10] sin(3./2*k)/k * 2./3*cos(k*x)", \ sum100(x) title "1./2 + sum [k=1:100] sin(3./2*k)/k * 2./3*cos(k*x)", \ sum1000(x) title "1./2 + sum [k=1:1000] sin(3./2*k)/k * 2./3*cos(k*x)" |