# set terminal svg size 600,400 dynamic enhanced fname 'arial' fsize 10 mousing name "bivariat_3" butt solid # set output 'bivariat.3.svg' set key inside right bottom vertical Right noreverse enhanced autotitles nobox set samples 50, 50 set style data lines set title "approximate the integral of functions (upper and lower limits)" integral_f(x) = (x>0)?int1a(x,x/ceil(x/delta)):-int1b(x,-x/ceil(-x/delta)) int1a(x,d) = (x<=d*.1) ? 0 : (int1a(x-d,d)+(f(x-d)+4*f(x-d*.5)+f(x))*d/6.) int1b(x,d) = (x>=-d*.1) ? 0 : (int1b(x+d,d)+(f(x+d)+4*f(x+d*.5)+f(x))*d/6.) f(x)=(x-2)**2-20 integral2_f(x,y) = (xy-d*.5) ? 0 : (int2(x+d,y,d) + (f(x)+4*f(x+d*.5)+f(x+d))*d/6.) delta = 0.2 GPFUN_integral_f = "integral_f(x) = (x>0)?int1a(x,x/ceil(x/delta)):-int1b(x,-x/ceil(-x/delta))" GPFUN_int1a = "int1a(x,d) = (x<=d*.1) ? 0 : (int1a(x-d,d)+(f(x-d)+4*f(x-d*.5)+f(x))*d/6.)" GPFUN_int1b = "int1b(x,d) = (x>=-d*.1) ? 0 : (int1b(x+d,d)+(f(x+d)+4*f(x+d*.5)+f(x))*d/6.)" GPFUN_integral2_f = "integral2_f(x,y) = (x